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The equations of the gauge theory of gravitation [Debney et al., General
Relativity and Gravitation, 9, 879-887 (1978)] are derived from a complex
quadratic Lagrangian with torsion. The derivation is performed in a coordinate
basis in a completely covariant way.

The purpose of this note is to briefly describe how the field equations
of the gauge theory of gravitation (see, e.g., Debney et al., 1978) can be
derived in a conceptually much simpler way from a quadratic Lagrangian
with torsion. The present derivation requires only knowledge of standard
tensor algebra and analysis; no familiarity with the gauge theory of gravita-
tion is needed at all. The derivation also has the merit that it is generally
covariant and can be performed in a coordinate (holonomic) basis, and that
the equations are all derived from a Lagrangian, which is complex, however.

The equations as given by Debney et al. (1978) are

$0u+ Comin@m" =0 [their equation (1.1)] (1)
*Comn@™" =0 [their equation (1.3)] (2)
*Counrs: p8"7 =0 [their equation (1 4)] (3)

The contraction of (1) yields Q =0. As we derive the equations from a
purely quadratic Lagrangian, it follows that { = 0, and so our equations are
more general in that they allow Q = 0.

We start with the Lagrangian density

L= (= 8) Uy @)

Xy uv
887
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Here,
U\:yuv = I/ny uv + M\'y uy (5)

W. is a sort of a counterpart of the Weyl tensor in a manifold with

Xy uv

torsion; it has the same symmetries

l/V)cyuv = uvxy == I/Vy)c w W\‘yvu (6)
Wx[y uv] = 0 (7)

It is related to the (2,0)+(0, 2) representation of the Lorentz group [compare
Hayashi 1968, equation (3.24) or Hayashi and Bregman 1973, Appendix
IIb]; it i1s expressed as

Weruo= 2Dy 2Dy * Do+ Dyuox = Doy = Doy (8)
where
Dyuo=Royuo + sR(8eu8y0 ~ Bxo8yu)

—3(Ryo8eu Rau8ro = RyuBro = Roo8yu) )

Thus ‘
Dyuo8” =0, W, ,8"=0 (10)
Here, R, ,, is the Riemann tensor, which is the sum of the curvature
tensor Q. ,,, and the distortion tensor P, , ,, (compare Gogala, 1980), which

are defined as

A A

Quruo=Liyoyu—Tepuro + I Ly — I, (in a coordinate basis)
(11)

P m (12)

xyuv

S, Sy vmS,

uyn — Svym uxn)g

S, =,

Xy, u uxy,v

+(S,

vxm

Here, S,

uxy

denotes the contortion tensor, antisymmetric in the last two
indices, I', ,, is the Levi-Civita connection, and “;” denotes the covariant
derivative with respect to it.
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Similarly to (8) and (9), we define

Mxy uv 2Ex_y up + 2Euuxy + vayu + E_yuvx - E:J_vxu - Exuuy (13)
where
Exyuv = *nyuu + %*R(gxugyu - gxugyu)
- %(* yvgxu + *qug_yv - *Ryugxo - *vagyu) (14)
The asterisk denotes the dual tensor; we have
*ny uo = Rk/uv"mn xygkmgln (15)

with *R, , and *R being its contractions over y and v, and x and u, y and v,
respectively.
Note that
*D, ., * E *Wepwo =M (16)

Xy uv Xy uv? Xy up Xy up
We use the imaginary Levi-Civita tensor, defined as

I/z mn l mn
Metmn =3(+ 8) " Etmns W =1 (+ )l/zekl (17)
g

so that the double dual of a tensor is equal to the original tensor itself,
without any change of the sign.

The Lagrangian (4) is thus complex. It has an interesting property that
the contortion tensor appears in it only in the self-dual combination

Sjkl + S/ " N ki (18)
As7,,,,, is imaginary, this combination recalls somewhat the (1,0) represen-
tation of the Lorentz group.

As the basic variables, with respect to which we perform the Hamilto-
nian differentiation, we take only tensor quantities; in our case, they are the
components of the metric and the contortion tensors.
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The Hamiltonian derivative of (4) with respect to g, is'

G =G We, W, W, uiWeyun + Xab

xyuoWxyuv — xyua'"xyu

—2U:ta ub; u; x _2[]xb ua; u; x + Uxa quxb uv + Uxb uuQxa uv

+ nyuv(svyasuxb+s Suxa)+2[( cub+ bua) uxz]
+2[ xy ub Suva+Syua ];X+2[(nyua(suyb+syub)];x (19)

It is of course symmetric in a and b.
Here

X b _*nyub(R

a

+Ryge,+ Ry yut+ R

Xy ua uaxy axyu yuax )

- *nyua(nyub + Rubxy + beyu + Ryubx)

+3 (*qu + *Rux)(Rxa ub + Rxb ua)+3 *Rxa(Rxb + be)

+3 *Rxb(Rxa+Rax)_2 *R(Rab+Rba) (20)
Note also, that W, . satisfies the conditions for the Bach-Lanczos-

Lovelock identity (cf e.g., Lovelock and Rund, 1975, p. 128, exercise 4.9,
and p. 293, exercise 7.37), so that the first term in (19) is equal to

3 VnyuaVnyub (21)

The Hamiltonian derivative with respect to S, is antisymmetric in b
and ¢, and has the form

Aa be = 4( chaz; - Uxb uaSuxc + chuaSuxb) (22)

An expansion into components shows that its real and imaginary parts are
related by the proportionality relation

- d
Aryabe ~ *Acirabe = Aiya “Nepe (23)

'In the equations (19), (20), (22), (24), (26), (28)—(36), (38), and (39), we write all the
contravariant indices as covariant indices in order to enhance the lucidity of the equations and
to simplify the printing. The interpretation is simple; if a covariant index appears twice, that
means that one of the two indices is a contravariant index. We can afford to do that because
all the quantities involved are either tensors or (metric-preserving) covariant derivatives of
tensors.
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Thus, (22) yields only 24 independent field equations of the form
A(r)abc= 4(Wbcaz;z xbuaSuxc+ VVxeuaSuxb) =0 (24)

When the contortion tensor is identically zero, then (8) is proportional
to the classical Weyl tensor

Vnyuu(SoxyEO)=6nyuu (25)
and so
A(r)abc(vay = 0) = 24Cbcaz;z = 0 (26)

This system of equations is identical to (3), because the left and the right
duals of the Weyl tensor are equal to each other.

Instead of requiring that G, (19) be zero, we can now require, thanks
to (24) and (23), that the combination

Hab = Gab +%(Aabc;d + Abac;d)ng

+%(Ambc'smad + Amacsmbd)ng (27)
be zero. By inserting (22) into (27) we find

Hb_(__) xyuaVnyub+X +U R

a xauv*txbuv

+U buv xa uv (28)

An explicit calculation shows that H,,g%® =0, so that (28) results in only

nine independent complex equations. They split into nine real equations,

H(r)ab=Vanuo(Rxbuv_%Vbeuv)_'-Wbuo( xauv I/anuu) 0 (29)
and nine imaginary equations,
H(i)ab = Xab + an uvab uv + be uvaa up = 0 (30)

For zero contortion, (29) becomes
H(r)ab xaun(Qxbuo xbuv)+6 buo(Qxauv xauu) 0 (31)
which after the insertion of the explicit expression for C,, ,, yields

H(r)ab 12Cxa ubeu (32)
which is equation (1) with { =0.
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Similarly, H,;,,, becomes for zero contortion

H(i)ab = 3[ —ZQkaannxbnklmn + anxy(Qalxynmnbl + lexynmnal)]

= 3[( - lexb + *QZIXb)an xa + ( - lexa + *Ql’:lxa)an xb] Ntmn
(33)

An expansion of the double dual gives

*Q/tlbemn xalkimn = Qk[bemn xalkimn + 2quan xalmnub (34)

Thus
H(i)ah = 6qu(*Qubxa + *Qua xb) = 12qu*Q.\'u ub = 12qu* xaub = 0
(35)

which is equation (2).

It has been shown by (Debney et al., 1978) that the system of equations
(1), (2), and (3), have the same solutions as Einstein equations in vacuum,
Q,,=0. The system of equations (32), (35), and (26) may allow more
general solutions, because the restriction Q = 0 is not there any more. The
system of equations (29), (30), and (24) may even have nontrivial solutions,
which are regular everywhere thanks to additional degrees of freedom,
offered by the components of the contortion tensor. The details of these
considerations and more details of the calculations leading to the results of
the present paper will be published separately.

By combining (26) with (3), we get

Coeadiziz =+ ChcarQubaz + Cokd:Qucar T Cock:Pkdaz + ChearQua

- Ckcaszbdz - Cbk aszcdz - Cbcszkadz - Cbcakad (36)

For sufficiently small curvatures, this is the wave equation for Weyl tensor.

Although we now have new field equations, we can consider that
Einstein equations for matter are still valid, but not as field equations. They
can rather be considered as definition equation for the matter tensor in
terms of the space-time curvature (Eddington and Schrodinger interpreta-
tion), that is

T,=0— %gikQ (37)

rather than the other way around. As the equations (32) and (35) can also be
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written as

(qu - %gqu)Cxa ub = T:tucxa ub = 0 (38)
(qu - %gqu)* xaub Txu*Cxa ub 0 (39)

they can be interpreted as describing the coupling between the gravitating
matter and the pure gravitational field.
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